SI UNIT DEFINITIONS (D6)

Base Units

Base Unit	Base Symbol	Base Quantity	Typical Symbol	Formal Definition	Equation
Second	S	Time	t	The second, symbol s, is the SI unit of time. It is defined by taking the fixed numerical value of the caesium frequency, Δv_{Cs} , the unperturbed ground-state hyperfine transition frequency of the caesium 133 atom, to be 9 192 631 770 when expressed in the unit Hz, which is equal to s^{-1} .	$1 s = \frac{9192631770}{\Delta v_{Cs}}$
Metre	m	Length	l, x, r, etc.	The metre, symbol m, is the SI unit of length. It is defined by taking the fixed numerical value of the speed of light in vacuum, c, to be 299 792 458 when expressed in the unit m s ⁻¹ , where the second is defined in terms of the caesium frequency $\Delta v_{\rm Cs}$.	$1 \text{ m} = \left(\frac{c}{299792458}\right) \text{s}$
Kilogram	kg	Mass	m	The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant, h, to be $6.626\ 070\ 15 \times 10^{-34}$ when expressed in the unit J s, which is equal to kg m ² s ⁻¹ , where the metre and the second are defined in terms of c and $\Delta\nu_{Cs}$.	$1 \text{ kg} = \left(\frac{\text{h}}{6.626\ 070\ 15 \times 10^{-34}}\right) \text{m}^{-2}\text{s}$
Ampere	A	Electric Current	I, i	The ampere, symbol A, is the SI unit of electric current. It is defined by taking the fixed numerical value of the elementary charge, e, to be $1.602\ 176\ 634 \times 10^{-19}$ when expressed in the unit C, which is equal to A s, where the second is defined in terms of Δv_{Cs} .	$1 \text{ A} = \left(\frac{\text{e}}{1.602\ 176\ 634 \times 10^{-19}}\right) \text{s}^{-1}$
Kelvin	K	Thermodynamic Temperature	Т	The kelvin, symbol K, is the SI unit of thermodynamic temperature. It is defined by taking the fixed numerical value of the Boltzmann constant, k, to be $1.380\ 649 \times 10^{-23}$ when expressed in the unit J K ⁻¹ , which is equal to kg m ² s ⁻²	$1 \text{ K} = \left(\frac{1.380 649 \times 10^{-23}}{\text{k}}\right) \text{kg m}^2 \text{ s}^{-2}$

Base Unit	Base Symbol	Base Quantity	Typical Symbol	Formal Definition	Equation
				K^{-1} , where the kilogram, metre and second are defined in terms of h, c and Δv_{Cs} .	
Mole	mol	Amount of Substance	n	The mole, symbol mol, is the SI unit of amount of substance. One mole contains exactly $6.022 \ 140 \ 76 \times 10^{23}$ elementary entities. This number is the fixed numerical value of the Avogadro constant, N _A , when expressed in the unit mol ⁻¹ and is called the Avogadro number. The amount of substance, symbol n, of a system is a measure of the number of specified elementary entities. An elementary entity may be an atom, a molecule, an ion, an electron, any other particle or specified group of particles.	$1 \text{ mol} = \left(\frac{6.022\ 140\ 76 \times 10^{23}}{N_{\text{A}}}\right)$
Candela	cd	Luminous Intensity	Iv	The candela, symbol cd, is the SI unit of luminous intensity in a given direction. It is defined by taking the fixed numerical value of the luminous efficacy of monochromatic radiation of frequency 540×10^{12} Hz, K _{cd} , to be 683 when expressed in the unit lm W ⁻¹ , which is equal to cd sr W ⁻¹ , or cd sr kg ⁻¹ m ⁻² s ³ , where the kilogram, metre and second are defined in terms of h, c and Δv_{Cs} .	$1 \text{ cd} = \left(\frac{K_{\text{cd}}}{683}\right) \text{kg m}^2 \text{ s}^{-3} \text{ sr}^{-1}$

Sources:

- Base Unit^[1]
- Base Symbol^[1]
- Base Quantity^[1]
- Typical Symbol^[1]
- Formal Definition^[1]
- Equation ^[1]

Derived Units

Derived Unit	Unit Symbol	Derived Quantity	Equation Expressed in Terms of SI Base Units	Equation Expressed in Terms of Other SI Units
Radian	rad	Plane Angle	rad = m/m	-
Steradian	sr	Solid Angle	$sr = m^2/m^2$	-
Hertz	Hz	Frequency	$Hz = s^{-1}$	-
Newton	N	Force	$N = kg m s^{-2}$	-
Pascal	Ра	Pressure, Stress	$Pa = kg m^{-1} s^{-2}$	-
Joule	J	Energy, Work, Amount of Heat	$J = kg m^2 s^{-2}$	J = N m
Watt	W	Power, Radiant Flux	$W = kg m^2 s^{-3}$	W = J/s
Coulomb	С	Electric Charge	C = A s	-
Volt	V	Electric Potential Difference	$V = kg m^2 s^{-3} A^{-1}$	V = W/A
Farad	F	Capacitance	$F = kg^{-1} m^{-2} s^4 A^2$	F = C/V
Ohm	Ω	Electric Resistance	$\Omega = \mathrm{kg}\mathrm{m}^2\mathrm{s}^{-3}\mathrm{A}^{-2}$	$\Omega = V/A$
Siemens	S	Electric Conductance	$S = kg^{-1} m^{-2} s^3 A^2$	S = A/V
Weber	Wb	Magnetic Flux	$Wb = kg m^2 s^{-2} A^{-1}$	Wb = V s
Tesla	Т	Magnetic Flux Density	$T = kg s^{-2} A^{-1}$	$T = Wb/m^2$
Henry	Н	Inductance	$H = kg m^2 s^{-2} A^{-2}$	H = Wb/A

Derived Unit	Unit Symbol	Derived Quantity	Equation Expressed in Terms of SI Base Units	Equation Expressed in Terms of Other SI Units
Degree Celsius	°C	Celsius Temperature	$^{\circ}C = K$, where $-273.15 \ ^{\circ}C = 0 \ K$	-
Lumen	lm	Luminous Flux	lm = cd sr	lm = cd sr
Lux	lx	Illuminance	$lx = cd sr m^{-2}$	$lx = lm/m^2$
Becquerel	Bq	Activity Referred to a Radionuclide	$Bq = s^{-1}$	-
Gray	Gy	Absorbed Dose, Kerma	$Gy = m^2 s^{-2}$	Gy = J/kg
Sievert	Sv	Dose Equivalent	$Sv = m^2 s^{-2}$	Sv = J/kg
Katal	kat	Catalytic Activity	$kat = mol s^{-1}$	-

Sources:

- Derived Unit ^[2]
- Unit Symbol^[2]
- Derived Quantity ^[2]
- Equation Expressed in Terms of SI Base Units ^[2]
- Equation Expressed in Terms of Other SI Units [2]